f2(empty, l) -> l
f2(cons2(x, k), l) -> g3(k, l, cons2(x, k))
g3(a, b, c) -> f2(a, cons2(b, c))
↳ QTRS
↳ DependencyPairsProof
f2(empty, l) -> l
f2(cons2(x, k), l) -> g3(k, l, cons2(x, k))
g3(a, b, c) -> f2(a, cons2(b, c))
F2(cons2(x, k), l) -> G3(k, l, cons2(x, k))
G3(a, b, c) -> F2(a, cons2(b, c))
f2(empty, l) -> l
f2(cons2(x, k), l) -> g3(k, l, cons2(x, k))
g3(a, b, c) -> f2(a, cons2(b, c))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
F2(cons2(x, k), l) -> G3(k, l, cons2(x, k))
G3(a, b, c) -> F2(a, cons2(b, c))
f2(empty, l) -> l
f2(cons2(x, k), l) -> g3(k, l, cons2(x, k))
g3(a, b, c) -> f2(a, cons2(b, c))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(cons2(x, k), l) -> G3(k, l, cons2(x, k))
Used ordering: Polynomial Order [17,21] with Interpretation:
G3(a, b, c) -> F2(a, cons2(b, c))
POL( G3(x1, ..., x3) ) = 2x1 + x3
POL( cons2(x1, x2) ) = 3x1 + 2x2 + 3
POL( F2(x1, x2) ) = max{0, 2x1 - 2}
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
G3(a, b, c) -> F2(a, cons2(b, c))
f2(empty, l) -> l
f2(cons2(x, k), l) -> g3(k, l, cons2(x, k))
g3(a, b, c) -> f2(a, cons2(b, c))